Weak solutions for the electrophoretic motion of charged particles

Luciano Bedin*
Mark Thompson,
Dept. de Matemática Pura e Aplicada, Instituto de Matemática, UFRGS,
Rua Bento Gonçalves 9500, Porto Alegre, RS
E-mail: luciano@mat.ufrgs.br, thompson@mat.ufrgsbr,

In this work we analyze the electrophoretic motion of a charged rigid particle in a viscous fluid (an electrolyte solution). The governing equation for the electrostatic potential is given by the Poisson-Boltzmann:

\[
\nabla \cdot (k(x) \nabla \psi(x)) - b(x, \psi(x)) = \rho(x), \text{ in } D, \\
\psi_0(x) = \psi_1(x), \text{ on } \partial K(t), \\
\psi(x) = \Psi(x), \text{ on } \partial D, \\
k_1 \frac{\partial \psi_1}{\partial n} - k_2 \frac{\partial \psi_2}{\partial n} = C \sigma, \text{ on } \partial K(t),
\]

where \(K(t) \in C^{1,1} \) is a domain in \(\mathbb{R}^n \) occupied by the particle in the time \(t \in [0, T] \) and \(D \in C^{1,1} \) is its enclosure; \(k : D \rightarrow L([\mathbb{R}^n, \mathbb{R}^n]), k_{ij}(x) = \delta_{ij}k_1 \) if \(x \in K(t), \) \(k_{ij}(x) = \delta_{ij}k_2 \) if \(x \in D\setminus K(t),k_1, k_2 \) are the dielectric constants of the \(K(t) \) and \(D\setminus K(t), \) \(r_D^2 \) is the Debye’s radius; \(b(x, \psi(x)) = k_2r_D^2 \sinh \psi(x) \) if \(x \in D\setminus K(t),b(x, \psi(x)) = 0 \) if \(x \in K(t), \) \(\Psi(x) \in C^1(D) \) is an external potential field; \(\rho \in L^2([0,T] \times D), \sigma \in L^2(\partial K(t)) \) are densities of fixed charges; \(C \) is a constant.

The hydrodynamics is governed by the Navier-Stokes equation for incompressible fluids:

\[
\rho_f(\partial_t v + \nabla \cdot (v \otimes v)) + \nabla p - \mu \Delta v = \rho_f f, \text{ div } v = 0 \text{ in } D\setminus K(t), \\
v = u + w \times r \text{ on } \partial K(t), \quad v = 0 \text{ on } \partial D,
\]

jointly with suitable initial conditions. Here \(\rho_f \) is the density (of the mass) of the fluid; \(\mu \) is the viscosity; \(v, p \) are the velocity and pressure of the fluid; \(u = u(t), w = w(t) \) are the translational and rotational velocities of the particle, \(r(x,t) = x - x_c(t), x_c(t) \) is the center of the mass of \(K(t); f(x,t) = (r_D^2k_2 \sinh(\psi_2(x,t)) + \rho_2(x,t))\nabla \psi_2(x,t) \) is the body force associated with the electrical action on the fluid. We are not considering the model treated in [1], [2] where the field \(-\nabla \psi_2 \) induces a relative displacement of the diffuse cloud of counterions which gives rise to a screening effect or a slip velocity of the fluid on \(\partial K(t). \)

Lemma 1. If \(\psi \) is the solution of (1), then \(\psi \in H^1(D) \cap C^{0,\alpha}(D), \) for some \(0 < \alpha < 1. \)

Lemma 2. If \(f(x,t) = (r_D^2k_2 \sinh(\psi_2(x,t)) + \rho_2(x,t))\nabla \psi_2(x,t), \) then \(f \in L^2([0,T] \times D\setminus K(t))^n \) and \(\int_0^T \| f(t) \|^2_{0,2, D\setminus K(t)} dt \leq C, \) where \(C \) does not depend on \((u,w). \)

With this a priori estimate for \(f \) we are able to use directly the result on the existence of appropriate weak solutions for the motion of rigid particles broached in the paper of Desjardins and Esteban [3]. Introducing the global velocity \(\tilde{u}(x,t) = v(x,t), \) if \(x \in D\setminus K(t), \) \(\tilde{u}(x,t) = u(x,t) + w(x,t) \times (x - x_c(t)) \) if \(x \in K \) and the analogous global density (of the mass) \(\rho_m \) we have, if dist(\(\partial K(t), \partial D \)) > 0, \(\forall t \in [0,T], \)

Theorem 1. There exist \(T^* \in (0, +\infty) \) and a weak solution \((u, \rho_m) \) such that \(u \in L^\infty([0, T); H^1_0(D))^n \) and \(\partial_t u \in L^2([0, T) \times D)^n \) for all \(T < T^*. \)

We observe that this formulation may be adapted for the study of electroosmotic pumping in microchannels [4].

References

*Supported by the CNPq-Brasil