We consider iterative solutions for the nonlinear equation
\[M(\int_{-L}^{L} u(s) \, ds) u''(x) = f(x, u(x), u(-x)), \quad x \in [-L, L] \] and subject to the boundary condition
\[u(-L) = u(L) = 0, \quad (2) \]
where \(M : \mathbb{R} \to \mathbb{R} \) and \(f : [-L, L] \times \mathbb{R}^2 \to \mathbb{R} \) are continuous functions with \(M \) satisfying:
\[\exists \delta > 0 \text{ such that } M(s) \geq \delta \text{ for all } s \in \mathbb{R}. \quad (3) \]
These differential equations are also variations of the stationary form of the Kirchhoff equation
\[u_{tt} - \left(c_0 + c_1 \int_{-L}^{L} |u_x|^2 \, dx \right) u_{xx} = 0, \]
which is a classical nonlinear model for the study of the vibrations of elastic strings. We refer the reader to [1] and [2] for a select literature on Kirchhoff equations. Boundary value problems involving reflection of the argument, \(f(x, u(x), u(-x)) \), appear in some difference equations and were considered systematically by several authors. Our work is motivated by the results of [3], we find assumptions on the functions \(f \) and \(M \) in order to assure the iterative sequence
\[u^{k+1}(x) = \frac{1}{2L} \int_{-L}^{L} G(x, s) f(s, u^k(s), u^k(-s)) \, ds, \quad (4) \]
where \(G \) is the Green’s function
\[G(x, s) = \begin{cases}
(s + L)(x - L) & \text{if } -L \leq s < x \leq L, \\
(x + L)(s - L) & \text{if } -L \leq x \leq s \leq L,
\end{cases} \quad (5) \]
converges to a solution of (1)-(2). We prove an existence theorem based on fixed point arguments and we discuss some numerical examples.

Theorem 1. Suppose some conditions on maximums of \(f, f', M, M' \) holds, then the problem (1)-(2) has a unique solution. In addition, this solution is the limit of the iterative sequence (4) with any initial approximation \(u^0 \) satisfying \(\|u^0\| \leq R \).

We compare our results with the ones given in [3], where the numerical solutions of the boundary value problem
\[u'' - \alpha u' = f(x, u(x), u(-x)), \quad u(-1) = u(1) = 0, \quad \alpha \geq 0 \text{ is studied.} \]
Our simulations lead us to conclude that when \(\alpha = 0 \), our sequence is better than the Sharma’s sequence, specially if the expected solution \(u \) does not exhibit symmetries or anti-symmetries, like \(u = 1 - x^2 \) or \(u = x - x^3 \). On the other hand, if \(\alpha > 0 \) is small, then both schemes are comparable. But if \(\alpha > 0 \) is large, then our iterative scheme does not work.

References

